Color Coded Fluorescent Imaging in Mice
Using the iBox® Scientia Small Animal Imaging System

Fluorescent protein imaging permits rapid and simple tracking of primary and metastatic cancer development in nude mice. In the paper by Cao et al. (2009), a new mouse test model, expressing cyan fluorescent protein (CFP) in most tissues, was developed to enable multicolor imaging of normal and tumor tissue.

Of the organs surveyed, the pancreas and reproductive organs showed the strongest blue fluorescence to use as background contrast to the red or green fluorescing tumor cells. For subsequent experiments using red fluorescent protein (RFP) and green fluorescent protein (GFP) labeled tumors, the tumors were readily tracked by multicolor imaging. XPA-1 human pancreatic tumor cells, expressing RFP alone or RFP in the cytoplasm/GFP in the nucleus, were orthotopically implanted in the pancreas and tracked over a period of several weeks.

The images to the right, taken with the iBox system, show week 6. **Panel A** shows red RFP expressing pancreatic cancer cells on the bright blue background of the whole animal and the isolated pancreas. **Panel B** shows the dual GFP (nucleus) and RFP (cytoplasm) expressing pancreatic cancer cells.
The iBox® Scientia Small Animal Imaging System was configured as follows: CFP, GFP, and RFP filter set, BioLite™ Multispectral Source (UVP, LLC), lens set to f/1.2 and exposures of 100 msec to 1 second.

Separate images for each color were acquired with VisionWorks® LS image acquisition and analysis software (UVP, LLC).

References
